Sabtu, 16 Mei 2015

KEKONGRUENAN

A. Pengertian kongruen
     Dua buah bangun yang kongruen adalah bangun yang mempunyai sisi-sisi yang sama (ukurannya sama), bentuknya sama dan sudutnya pun sama.
   Pernahkah kamu melihat seorang tukang bangunan yang sedang memasang ubin? Sebelum ubin-ubin itu dipasang, biasanya tukang tersebut memasang benang-benang sebagai tanda agar pemasangan ubin tersebut terlihat rapi, seperti tampak pada gambar di bawah ini. Cara pemasangan ubin tersebut dapat diterangkan secara geometri seperti berikut.
 

 
 
 
 
 
 
 
 
 
Gambar di atas adalah gambar permukaan lantai yang akan dipasang ubin persegipanjang. Pada permukaannya diberi garis-garis sejajar. Jika ubin ABCD digeser searah AB (tanpa dibalik), diperoleh A => B, B => E, D => C, dan C => F sehingga ubin ABCD akan menempati ubin BEFC. Akibatnya,:
 AB => BE sehingga AB = BE
BC => EF sehingga BC = EF
DC => CF sehingga DC = CF
AD => BC sehingga AD = BC
∠DAB =>  ∠CBE sehingga ∠DAB = ∠CBE
∠ABC =>  ∠BEF sehingga ∠ABC = ∠BEF
∠BCD =>  ∠EFC sehingga ∠BCD = ∠EFC
∠ADC =>  ∠BCF sehingga ∠ADC = ∠BCF
Berdasarkan uraian tersebut, diperoleh
  1. sisi-sisi yang bersesuaian dari persegipanjang ABCD dan persegipanjang BEFC sama panjang, dan
  2. sudut-sudut yang bersesuaian dari persegi panjang ABCD dan persegipanjang BEFC sama besar.
Hal tersebut menunjukkan bahwa persegipanjang ABCD dan persegipanjang BEFC memiliki bentuk dan ukuran yang sama. Dua persegi panjang yang demikian dikatakan kongruen.
Berdasarkan uraian tersebut diperoleh gambaran bahwa dua bangun yang kongruen pasti sebangun, tetapi dua bangun yang sebangun belum tentu kongruen. Bangun-bangun yang memiliki bentuk dan ukuran yang sama dikatakan bangun-bangun yang kongruen. Pengertian kekongruenan tersebut berlaku juga untuk setiap bangun datar.
Contoh Soal
Perhatikan gambar di bawah ini! Apakah persegipanjang ABCD kongruen dengan persegi panjang PQRS dan  apakah persegipanjang ABCD sebangun dengan persegi panjang PQRS? buktikan!
Penyelesaian:
Unsur-unsur persegipanjang ABCD adalah AB = DC = 8 cm, AD = BC = 6 cm, dan ∠A = ∠B = ∠C = ∠D = 90°. Amati persegipanjang PQRS dengan diagonal PR. Panjang PQ dapat ditentukan dengan menggunakan Dalil Pythagoras seperti berikut.
PQ = √(PR)2 – (QR)2
PQ = √(10)2 – (6)2
PQ = √64
PQ = 8
Jadi, unsur-unsur persegipanjang PQRS adalah PQ = SR = 8 cm, PS = QR = 6 cm, dan ∠P = ∠Q = ∠R = ∠S= 90°.  Dari uraian tersebut tampak bahwa sisi-sisi yang bersesuaian dari persegipanjang ABCD dan persegipanjang PQRS sama panjang. Selain itu, sudut-sudut yang bersesuaian dari kedua persegipanjang itu sama besar. Jadi, persegipanjang ABCD kongruen dengan persegipanjang PQRS. Dua bangun datar yang kongruen pasti sebangun. Jadi, persegi panjang ABCD sebangun dengan persegipanjang PQRS.
 
B. Syarat dua bangun yang kongruen :
1.       Mempunyai sisi-sisi yang sama (sisi-sisi-sisi). Ketiga sisi dari dua segitiga itu mempunyai ukuran yang sama.
 
2.       Mempunyai dua buah sisi yang sama dan satu sudut yang sama (sisi-sisi-sudut)
 
3.       Mempunyai sebuah sisi yang sama dan dua sudut yang sama (sisi-sudut-sudut)
 
 
 

1 komentar:

  1. Casino Resort Las Vegas, NV | Mapyro
    Find your perfect stop for those seeking to play casino and 대구광역 출장마사지 poker, 춘천 출장안마 featuring 논산 출장샵 5 restaurants, bars, and lounges, plus a bowling 김포 출장샵 alley.

    BalasHapus