Sabtu, 16 Mei 2015

Himpunan dan Macam-macam Himpunan

1.   Pengertian Himpunan

       Dalam matematika, himpunan adalah segala koleksi benda-benda tertentu yang dianggap sebagai satu kesatuan. Walaupun hal ini merupakan ide yang sederhana, tidak salah jika himpunan merupakan salah satu konsep penting dan mendasar dalam matematika modern, dan karenanya, studi mengenai struktur kemungkinan himpunan danteori himpunan sangatlah berguna. Sedangkan dalam pengertian yang lebih lengkap, himpunan adalah kumpulan suatu benda baik kongkrit (nyata) ataupun abstrak yang berada dalam suatu tempat sesuai dengan sifat tertentu. Benda kongkrit ataupun abstrak yang terdapat dalam himpunan disebut elemen atau anggota himpunan, biasanya ditulis di antara dua kurung kurawal notasi ϵ. Sedangkan, himpunan yang tidak mempunyai anggota disebut himpunan kosong. Nama himpunan biasanya dinotasikan dengan huruf kapital. Contoh, benda a menjadi anggota himpunan K dapat dinyatan dengan a ϵ K. Sedangkan, banyaknya anggota himpunan K yang berhingga dinotasikan dengan n (K).
Pengertian Himpunan dan Jenis Himpunan
Himpunan K dan L

2. Macam-macam himpunan dalam Matematika adalah :

       1.Himpunan berhingga adalah suatu himpunan yang jumlah anggotanya dapat dihitung. 
Contohnya D = {bilangan genap kurang dari 10} atau A = {2,4,6,8}. 
Himpunan D jumlah angotanya dapat dihitung yaitu sebanyak 4 buah. 

       2. Himpunan tak hingga adalah suatu himpunan yang jumlah anggotanya tidak terbatas atau tak hingga. Contohnya: A= {bilangan genap}, B= {bilangan ganjil} 

       3.Himpunan kosong adalah suatu himpunan yang tidak memiliki anggota sama sekali. Himpunan kosong dilambangkan dengan tanda {}. 
Contohnya B = {bilangan genap antara 2 dan 4}. ditulis B={}={0}.

       4.Himpunan ekuivalen/himpunan sama adalah himpunan yang anggotanya sama
   contohnya A= {b,c,d} B={d,c,b} A=B

       5.Himpunan semesta adalah himpunan dari semua unsur yang sedang dibicarakan. Himpunan semesta juga disebut himpunan uiversal dan ditulis dengan huruf S.
contohnya:A = {1,3,5,7,9}
himpunan semestanya berupa:
S = {bilangan asli}
S = {bilangan cacah} 
S = {bilangan ganjil kurang dari 10}

     6.Himpunan bilangan cacah adalah himpunan bilangan yang anggotanya dimulai dari nol dan seterusnya contoh K = {0,1,2,3,4,5} 

     7.Himpunan bagian adalah apabila setiap unsur dalam himpunan B termasuk juga anggota A, maka B merupakan bagian dari himpunan A. contohnya B = {a,c,e} A = {a,b,c,d,e} 
jadi B bagian dari A.Anggota himpunan n adalah suatu unsur dari suatu himpunan. Contohnya : A = (a,b,c,d,e} maka a elemen A

     8.Himpunan lepas adalah ssuatu himpunan yang tidak mempunyai anggota persekutuan dengan himpunan lain. ContohnyaA = {d,e,f} B = {g,h,i} maka himpunan A tidak mempunyai anggota persekutuan dengan himpunan B atau A//B bukan anggota himpunan adalah unsur ini tidak termasuk dalam himpunan tersebut contohnya A = {a,b,c,d} e bukan anggota himpunan A.


    9.Himpunan bilangan asli adalah himpunan bilangan yang anggotanya dimulai dari bilangan satu dan seterusnya.Contohnya D = {1,2,3,4,...}

    10. Himpunan bilangan genap adalah himpunan yang anggotanya dimulai dari angka dua dan selalu genap atau habis dibagi dua contohnya G = {2,4,6,8,10}

    11.Himpunan bilangan ganjil adalah himpunan yang anggota bilanganya tidak habis dibagi dua .contohnya K = {1,3,5,7}

    12.Himpunan bilangan prima adalah himpunan bilangan yang anggotanya semua bilangan yang memiliki dua faktor contohnya Y = {2,3,,5,7}

    13. Himpunan kuadrat bilangan cacah adalah himpunan bilangan cacah yang anggotanya dipangkatkan dua.Contohnya Y = {0^2,1^2,3^2)
3. Cara menyatakan himpunan:
  • Dengan kata-kata. Contoh: A = himpunan bilangan asli yang kurang dari 20
  • Dengan roster(mendaftar anggota-anggotanya). Contoh: B = {…., 2, 3, 5, 7, 11, 13, ….}
  • Dengan rule (notasi pembentuk himpunan atau anggota himpunan dinotasikan dengan huruf kecil yang kemudian diikuti dengan garis dan syarat keanggotaan himpunan). Contoh: C = {x| -1 ≤ x ≤ 10, x ϵ B}.

Tidak ada komentar:

Posting Komentar